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Atomic Spectral-Product Representations of Molecular Electronic Structure: Metric
Matrices and Atomic-Product Composition of Molecular Eigenfunctions
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Recent progress is reported in development of ab initio computational methods for the electronic structures
of molecules employing the many-electron eigenstates of constituent atoms in spectral-product forms. The
approach provides a universal atomic-product description of the electronic structure of matter as an alternative
to more commonly employed valence-bond- or molecular-orbital-based representations. The Hamiltonian matrix
in this representation is seen to comprise a sum over atomic energies and a pairwise sum over Coulombic
interaction terms that depend only on the separations of the individual atomic pairs. Overall electron
antisymmetry can be enforced by unitary transformation when appropriate, rather than as a possibly
encumbering or unnecessary global constraint. The matrix representative of the antisymmetrizer in the spectral-
product basis, which is equivalent to the metric matrix of the corresponding explicitly antisymmetric basis,
provides the required transformation to antisymmetric or linearly independent states after Hamiltonian
evaluation. Particular attention is focused in the present report on properties of the metric matrix and on the
atomic-product compositions of molecular eigenstates as described in the spectral-product representations.
[lustrative calculations are reported for simple but prototypically important diatomic (H,, CH) and triatomic
(Hs, CH;) molecules employing algorithms and computer codes devised recently for this purpose. This particular
implementation of the approach combines Slater-orbital-based one- and two-electron integral evaluations,
valence-bond constructions of standard tableau functions and matrices, and transformations to atomic eigenstate-
product representations. The calculated metric matrices and corresponding potential energy surfaces obtained
in this way elucidate a number of aspects of the spectral-product development, including the nature of closure
in the representation, the general redundancy or linear dependence of its explicitly antisymmetrized form, the
convergence of the apparently disparate atomic-product and explicitly antisymmetrized atomic-product forms
to a common invariant subspace, and the nature of a chemical bonding descriptor provided by the atomic-
product compositions of molecular eigenstates. Concluding remarks indicate additional studies in progress
and the prognosis for performing atomic spectral-product calculations more generally and efficiently.

employed in the many-electron molecular representational basis

The electronic eigenstates of atoms provide a well-known
formal basis for outer-product representations of molecular
electronic wave functions and calculations of interaction energies
in long-range separation limits.! More generally, ab initio
investigations of the electronic structures and associated potential
energy surfaces of molecules as currently performed tend to
employ explicitly antisymmetric representations based on early
molecular-orbital*® or valence-bond*® descriptions of the rel-
evant electronic degrees of freedom.%” In these approaches, the
presence of the component atomic constituents is not made
explicit but is evident largely in the choices of atomic orbitals
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sets. It has proved difficult to base a general ab initio
computational approach to the electronic structures of molecules
directly on an atomic eigenstate-product representation,® in spite
of the fact that atoms clearly comprise molecules and other
forms of matter, upon which recognition the conceptual founda-
tions of chemistry largely rest.

A recent series of reports motivated by earlier work empha-
sizes both the difficulties and potential advantages of adopting
an atomic eigenstate-product representation in ab initio calcula-
tions of molecular electronic structures.'®"** This approach,
which has been described in considerable detail in the previous
reports, is predicated largely on the demonstrable closure of
the outer spectral product of complete constituent atomic
eigenstates for representations of molecular electronic states in
the absence of explicit (term-by-term) enforcement of aggregate
electron antisymmetry. Although both conceptual and compu-
tational barriers must be overcome in such a universal atomic-
fragment-based approach to molecular electronic structure,
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certain potential advantages follow from its adoption. These
include the possibility of performing atomic and atomic-
interaction calculations employing highly accurate configuration-
interaction methods and retaining such information for repeated
molecular applications, employing entirely analytical methods
in calculating the angular dependences of atomic interactions,
and the opportunity to enforce molecular antisymmetry when
required, rather than as a possibly encumbering overall global
constraint, to mention some important potential advantages.”~'*

In the present contribution, additional theoretical aspects of
the atomic spectral-product approach to molecular electronic
structure are reported, the essential features of a recently devised
computer code suite for performing such calculations are
indicated, and selected computational applications to prototypi-
cally important diatomic (H,, CH) and triatomic (Hs;, CH,)
molecules are presented. Calculations of the metric matrices in
these cases, and of corresponding potential energy curves and
surfaces, in spectral-product representations illustrate the ca-
pabilities of the Slater-orbital- and valence-bond-based algo-
rithms and codes devised. The metric matrices, which provide
a connecting bridge between spectral-product representations
in the absence or presence of term-by-term antisymmetry, clarify
a number of aspects of the development, including the nature
of closure in the two representations and the general redundancy
of the explicitly antisymmetrized form. The calculations of the
eigenspectrum of the antisymmetrizer in the spectral-product
representation reported for H, and H; demonstrate quantitatively
its nature as a projection-operator and illustrate the additional
redundancies which arise between commonly employed charge-
transfer and one-electron covalent excitations in these cases.
The corresponding potential energy surfaces for ground and
excited states of H, and Hj illustrate the capabilities of the Slater-
orbital-based integral evaluations employed in the codes devised.
The atomic-product compositions of the spectral-product rep-
resentations of molecular eigenfunctions are seen to provide
novel quantitative descriptors of chemical bonding in CH and
CH, molecules, which have played important historical roles
in the development of accurate ab initio quantum methods for
electronic structure and spectra.!>!6

The theory is reviewed briefly in section II, where the atomic
spectral representations of aggregate electronic degrees of
freedom are defined,>!” the forms of metric and Hamiltonian
matrices with and without explicit antisymmetrization are
reported,'"'? and the unitary transformation formalism for
isolation of the physical and linearly independent Hamiltonian
subspaces are given and their equivalence established.'*!
Calculations employing the recently devised computer codes,
reported in section III, include metric matrices and energy
eigenvalues for the H,, CH, H;, and CH, molecules. Discussion
and concluding remarks presented in section IV describe
additional studies in progress and strategies employed in
performing atomic spectral-product calculations more generally
and efficiently.

II. Theoretical Background and Developments

Selected background information is provided in this section
in summary of previously devised aspects of the spectral-product
approach to molecular electronic structure,’”'* and new theoreti-
cal developments and clarifications are reported. The atomic
spectral-product representations of molecular electronic states
of interest here are described in section A, construction of
Hamiltonian matrices in these representations are described in
section B, and the role of the aggregate metric matrix in isolation
of physically significant Schrodinger eigenstates is described
in section C.
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A. Atomic Spectral-Product Representations. The adia-
batic (Born—Oppenheimer) electronic states obtained from
solution of the nonrelativistic Schrodinger equation

Ar:R) ¥(r:R) = ¥(r:R)-E(R) (1)

provide useful first approximations to the chemical and physical
attributes of molecules and other atomic aggregates.'” Here, the
row vector W(r:R) contains the desired eigenstates, the diagonal
matrix E(R) contains the corresponding energy eigenvalues, r
refers to the coordinates of the n, electrons of the system, and
R designates the fixed spatial positions (R, Ry,..., Ry) of the N
atomic nuclei.
The nonrelativistic Hamiltonian operator in eq 1,

ZZ
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contains the familiar kinetic, electron—nuclear attraction, and
electron and nuclear repulsion operators and is totally symmetric
in all electron coordinates.'® Consequently, the solutions of eq
1 can be classified according to the irreducible representations
of the symmetric group S,, with the totally antisymmetric
solutions providing the physically significant Schrodinger eigen-
states.'?

The atomic spectral-product representation is written in the
outer-product (®) form *1°

O(rR) = (@) ® ®?2) ® - dVm)}, (3)

where the row vectors ®@(i) contain the formally complete
orthonormal antisymmetric eigenstates of the constituent atoms
(a=1to N) specified by the standard atomic quantum numbers
(E,L,My,S,Ms,P),* with i referring to the coordinates of the ng
electrons arbitrarily assigned to the atom o measured relative
to the atomic centers R,. These atomic states can be calculated
employing any of a number of highly efficient modern com-
putational methods, including highly accurate configuration-
interaction approaches.!” The subscript “O” in eq 3 indicates
the adoption of a particular ordering convention for the vector
sequence of spectral-product functions employed. More detailed
descriptions of these and of the other notational conventions of
eqs 1—3 and in the subsequent text have been reported
previously elsewhere.”™ !4

Although the representation of eq 3 is not term-by-term
antisymmetric in all electron coordinates, it is, in fact, complete
in the limit of spectral closure for representations of totally
antisymmetric aggregate eigenstates."'>*! Accordingly, eq 3 is
in this connection formally equivalent to the more familiar
explicitly (term-by-term) antisymmetric form?

®,(rR) = P, ®(r:R) =
2 (@1 @ 72) @ - dMm)}, (@)

where
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n!

Py= () nt ey )P R (=P, (5)

p=1

is the aggregate antisymmetrizer,'® normalized to ensure that
(PA®(r:R)IP,®(r:R)) becomes the unit matrix (—1T) in the limit
(R — o0), in accordance with the orthonormality of the square-
integrable antisymmetric atomic eigenstates in the row vectors
®(i). Alternatively, it is possible to enforce aggregate electron
antisymmetry employing a so-called coset decomposition of the
antisymmetrizer to isolate those electron permutations not
completely internal to the already antisymmetric atomic
eigenstates.??

An important difference between the representations of eqs
3 and 4 is found in their respective closure relations. In the
case of the orthonormal representation of eq 3, the closure
expression is ®(r:R)* ®(":R)" = o(r—r":R), where the Dirac
delta function o(r—r":R) applies to all irreducible representations
of S,, spanned by the basis, whereas the closure expression is
@ ,(r:R)-®,(r:R)" = Qr(r—r":R) for the nonorthogonal
explicitly antisymmetric representation of eq 4, where Q = n,!/
(ny!ny!+++ny!) is the redundancy of the explicitly antisymmetric
basis of eq 4 in the closure limit.!3

B. Hamiltonian Matrices in the Spectral-Product Repre-
sentations. It is convenient in connection with evaluation of
matrix elements to rewrite the Hamiltonian operator of eq 2 in
a form suggested by the assignments of groups of electrons to
atoms made in eq 3 in constructing spectral-product matrix
representatives. Specifically, letting i (j) designate the electrons
on atom o (f3), the Hamiltonian operator of eq 2 is written

N N—1 N
ArR) = Y A0+ Y, Y, ViR, (6
a=1

oa=1 f=a+1

where

N 2 ng—1 ng
A%G) = 2{— %Vﬁ— Z—e} + XY £
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includes the electronic terms arbitrarily associated with the atom
a, and

Z. 2" {8 Zget 7.6
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includes the Coulombic interaction terms between the pair of
atoms (o, f3).

Employing the basis sets of eqs 3 and 4 in variational
solutions of eq 1 gives the matrix Schrodinger equations
appropriate for each of the two representation

H(R)-Uy(R) = Uy(R)*E(R) (C))

and
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H,(R)* V4(R) = S(R)- V,4(R)-E(R) (10)
where
N

H(R) = (®(r:R)IATR)DTR) = Y H+
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are the respective Hamiltonian matrices. Whereas eqs 6—8 have
been employed in obtaining eqs 9 and 11, since the groups of
electrons in eqs 7 and 8 share the assignments of eq 3, it is
necessary to use the defining Hamiltonian operator of eq 2 in
obtaining eqs 10 and 12 for the representation of eq 4, in which
case prior antisymmetry prohibits such assignments of electrons
to particular atoms.

In eq 9, the unitary solution matrix Uy(R) diagonalizes the
Hamiltonian matrix of eq 11 constructed in the orthonormal
basis of eq 3. In contrast, the matrix Vy(R) in eq 10 is generally
not unitary since the metrically defined Hamiltonian matrix of
eq 12 is constructed in the nonorthogonal basis of eq 4. Rather,
Vu(R) satisfies the familiar condition Vy(R)™*S(R)*Vx(R) =
I, 7 with the metric matrix S(R) here and in eq 10 given by the
expression

S(R) = (P, ®(r:R)P,®(rR)) = Q"*B(r:R)IP,|P(r:R))
(13)

where the factor Q = n,!/(n;!n,y!++ny!) is the aforementioned
redundancy of the explicitly antisymmetric basis of eq 4 in the
closure limit."

Evidently, S(R) of eq 13 has an interpretation as the matrix
representative of the antisymmetrizer of eq 5 in the basis of eq
3, separate from its role as the metric matrix of the nonorthogo-
nal basis of eq 4. Accordingly, since the antisymmetrizer can
be normalized as an idempotent or projector operator having
eigenvalues 0 and 1 only,” it is seen that the allowable
eigenvalues of the S(R) matrix of eq 13 must converge to 0
and Q in the closure limit, with the value Q appearing in place
of 1 consequent of the wave function normalization convention
adopted in eq 5.

Although the Hamiltonian matrices of eqs 11 and 12 are
similar in form, the individual atomic and atomic-pairwise
interaction terms shown there differ significantly in the two
representations. Specifically, the atomic terms in eq 11 obtained
from eq 7 are independent of atomic position, and the Coulombic
interaction terms obtained from eq 8 depend only on the vector
separation Reg of an individual atomic pair (o). In contrast,
the terms in eq 12, which must be evaluated using the
Hamiltonian of eq 2, formally depend on the positions R of all
the atoms in the aggregate due to the overall electron antisym-
metry of the basis of eq 4. That is, because the electronic
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coordinates in the representation of eq 4 appear at all the atomic
centers, the individual Coulombic interactions in the Hamiltonian
of eq 2 can be alternatively inter- or intra-atomic terms, and
the partitioning of eqs 6—8, which constitutes an assignment
of particular electrons to specific atomic centers, can not be
employed in this case.

The simpler forms of the terms appearing in eq 11 relative
to those in eq 12 are consequences of the orthonormality of the
atomic spectral-product basis employed in the absence of prior
enforcement of overall aggregate electron antisymmetry, the use
of atomic eigenstates in the representation, and the atomic
pairwise-additive nature of the interaction terms in the Hamil-
tonian operator of eq 6. In contrast, the atomic-pairwise nature
of the interaction terms in the Hamiltonian operator can not be
employed to advantage in conjunction with use of the explicitly
antisymmetric representation of eq 4. It spite of the apparent
differences in the two representations, both can give the same
physical Schrodinger eigenstates and energies in appropriate
closure limits, as described below.

C. Isolation of Physical Eigenstates in the Spectral-
Product Representations. It has been shown that the basis of
eq 3 spans the totally antisymmetric representation of the
aggregate n-electron symmetric group S,, once and only once
in the limit of closure, although other unphysical non totally
antisymmetric (non-Pauli) representations of S, are also spanned
by the basis.'* The non-Pauli solutions are accordingly included
in the columns of the unitary transformation matrix Uy(R)
obtained from solution of eq 9. In contrast, although the
solutions of eq 10 are totally antisymmetric by construction,
they generally become numerically unstable in large representa-
tions, consequent of the linear dependence arising from the
Q-fold redundancy of the basis of eq 4 in the closure limit.

The desired Pauli and linearly independent solutions can be
obtained by transforming eqs 9 and 10 to representations which
isolate totally antisymmetric and linearly independent subspaces,
respectively. The unitary transformation matrix Ug(R) required
to accomplish this partitioning of eqs 9 and 10 is obtained from
diagonalization

Us(R)"*S(R)-Ug(R) = sy(R) =

(s,®)},, 0 (o1, o
(0 " {sd<R>}W) (o " 0) 19

of the Hermitian metric matrix of eq 13.'>!3 Here, the non-
negative eigenvalue matrix sq(R) is partitioned into an upper
diagonal {s4(R)},, containing the largest eigenvalues, which tend
to the indicated common redundancy factor Q in the closure
limit, and a lower diagonal {sq(R)},, of smaller eigenvalues
which tend to zero in the limit. This ordering is obtained in the
usual way by appropriate arrangement of the columns of the
transformation matrix Us(R) into physical (p) blocks on the left-
hand side of the transformation matrix and unphysical () blocks
on the right-hand side.

The diagonalization of eq 14 is seen to correspond to
construction of eigenstates of the Hermitian antisymmetrizer
in the spectral-product basis of eq 3 in the form'?

D (rR) = B(r:R)-UgR) — {{@¢(rR)},.(Pg(r:R)},)
(15)

where {®g(r:R)}, contains totally antisymmetric states corre-
sponding to the nonzero eigenvalues of the antisymmetrizer,
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and {®g(r:R)}, contains non-Pauli states corresponding to the
zero eigenvalues of the antisymmetrizer in the closure limit. In
contrast, in the antisymmetric basis of eq 4, the states generated
by the transformation matrix Ug(R) of eq 14 are written in the
familiar canonically orthogonalized form?*

®(r:R) = ®,(r:R)-Uy(R)*s,(R)"* —
{ PR}, {Ps(r:R)},—~0}  (16)

These states include correctly normalized linearly independent
combinations (p) of the original basis, as well as un-normalizable
null states associated with linearly dependent combinations (u)
of the basis of eq 4. Of course, in the case of degenerate
eigenvalues, the eigenstates of eqs 15 and 16 are generally
arbitrary but are nevertheless separated by the development into
two invariant subspaces. In the large-separation limit S(R—co)
— I, in which case the eigenvalues of the metric matrix are all
unity, both representations of eqs 3 and 4 are orthonormal, and
the states of eqs 15 and 16 are not required.

Equations 14 and 15 indicate that the eigenvalue spectrum
of the matrix S(R) in any finite representation will fall in the
finite interval (0, Q), with the upper (Q) and lower (0) limiting
points corresponding to the correctly converged eigenvalues Q
and 0 of the antisymmetrizer P, of eq 5.2 The corresponding
eigenvectors in finite representations will generally be mixtures
of totally antisymmetric and non totally antisymmetric states.
As the representation is enlarged, the eigenvalues will converge
to the upper and lower limiting points, and the corresponding
eigenvectors in the groupings of eq 15 will converge to the
physically significant totally antisymmetric space PA{®s(r:R)},
— Q"{®g(r:R)},, and to the non-Pauli null space Px{®g(r:
R)}, — 0.1 The linearly independent combinations of the term-
by-term antisymmetric basis functions of eq 4 given by eq 16
become identical to the totally antisymmetric states of eq 15 in
the closure limit,'* whereas the linearly dependent states of eq
16 are seen to be eliminated by the development in the standard
way.*

The physically significant blocks of the Hamiltonian matrices
of eqs 11 and 12 are obtained by transforming from the ®(r:
R) and ®(r:R) representations of eqs 3 and 4, respectively, to
the physically invariant subspaces ®@s(r:R) given by eqs 15 and
16. This is accomplished in the forms'?

(H,R)},, = (UR-HR)-U®)},, (17

{H,R)},, =
{s4R) 7}, {USR) - H,(R)-Ug(R)} ,* {s,(R) "7},
(18)

employing the matrix Ug(R), where the subscript (pp) refers to
the upper left-hand blocks of the enclosed matrices (cf., eqs
14—16). The unitary transformation matrix Ug(R) of eq 14
obtained from the metric matrix of eq 13 is therefore seen to
be responsible for incorporating the nonlocal effects of inter-
atomic aggregate electron permutation symmetry in the Hamil-
tonian matrix of eq 11 by virtue of eq 17. As a consequence,
all terms in both Hamiltonian matrices now depend formally
on the positions R of all the atoms in the aggregate.

Overall electron antisymmetry can be enforced as required
in this approach in accordance with the spatial separations of
the individual atoms and the associated perceived strengths of
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their interactions in the Hamiltonian of eq 17,'* rather than as
a possibly encumbering overall global constraint, as employed
in the more conventional Hamiltonian matrix in eq 18.8
Similarly, the role of the transformation matrix Ug(R) in the
explicitly antisymmetric representation of eq 4 is to isolate its
linearly independent subspace, in which connection the spatial
proximity of the constituents atoms clearly plays a central role,
emphasizing the underlying identical purposes of eqs 17 and
18 in isolating a common invariant subspace in which to express
the Hamiltonian matrix.

Finally, identical physically significant Schrodinger eigen-
states are obtained from the immediately foregoing Hamiltonian
matrices in the form W,(r:R) ={®(r:R)},* {Uu(R)},,, where
{®(r:R)}, is obtained from either eq 15 or eq 16 and {Uu(R)},,
is obtained from either of the Hamiltonian matrices of eqs 17
or 18. Although the requirements of computational implementa-
tions of the two approaches differ significantly, in view of the
“post” and “prior” incorporation of aggregate electron antisym-
metry in the two Hamiltonian matrices, the developments are
clearly united through use of the metric matrix of eq 13 in
isolating a common invariant physical subspace in which to
construct Schrodinger eigensolutions.

III. Computational Implementations and Applications

Algorithms and computer codes have been devised to evaluate
the various expressions given in the preceding sections. In brief,
a valence-bond code suite (CRUNCH?) has been modified to
accommodate the use of real Slater orbitals in evaluating both
atomic and molecular integrals (SMILES?®) for performing
configuration-interaction calculations of atomic eigenstates and
other information required to implement the spectral-product
development. Calculations are performed with this code suite
combination employing standard valence-bond tableau descrip-
tions of configurational-state functions,®?® and of the Hamilto-
nian and metric matrix elements, appropriate for both atomic
eigenstates and their atomic-pair interactions. The use of
common atomic orbitals and configurational-state functions for
both atomic eigenstates and their pairwise interactions, per-
formed as diatomic calculations, facilitates the transformation
from valence-bond wave functions and matrix elements to the
corresponding quantities in the spectral-product formalism.

Specifically, the transformation from atomic valence-bond
configurational-state functions ®{¥(i) to atomic eigenfunctions
® (i) takes the form ®®(i) = ®P(i)- V@, where the matrix
V@ and the associated atomic energies are obtained directly
from the valence-bond configuration-interaction calculation for
the atom o. This information for a pair of atoms a and f8
provides the transformation matrix V@ = (VOQV®)} from
the valence-bond configurational-state functions for the o5 pair
to the corresponding spectral-product functions, where the
subscript “O” refers to the product-ordering convention of eq
3. The transformation matrix V@@ is sufficient for determination
of the pairwise-interaction energies required in eqs 11 and 12,
whereas the additional ordered-product transformation matrix
of the form {V@®VPAQRV®) is required for determination of
the metric matrix of eq 13 for the triatomic systems of interest
here.

Computational results obtained in this way are reported in
section A for H, and H; molecules, in section B for diatomic
CH, and in section C for triatomic CH,. These calculations are
illustrative of selected aspects of the spectral-product approach,
and of the capabilities of the computational algorithms and codes
devised, and are not meant to provide exhaustive computational
descriptions of the quantities reported.
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Eigenvalues of S,
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R. (a)
Figure 1. Eigenvalues of the doublet- and quartet-state metric matrix
of eq 13 for symmetric collinear H; (H,—H,—H,) as functions of atomic
separation (R,, = Rp.): upper panel, 2slp atomic basis (375 terms);
lower panel, 3s2p atomic basis (2187 terms). The limiting points of
the spectra are 0 and Q = 3!/(1!1!1!) = 6, the latter value specifying
the redundancy of the antisymmetric basis of eq 4 in the closure limit.

A. Diatomic and Triatomic Hydrogen Molecules. Al-
though the metric matrix is familiar in connection with canonical
transformations of one-electron orbital basis sets for Hartree—Fock
calculations,? its attributes and importance in connection with
many-electron basis states are perhaps less familiar, particularly
in the context of the spectral-product representations described
here. Of particular interest is the role of the metric matrix in
providing a measure of the spectral closure of the representation
of eq 3 in the absence of explicit antisymmetry, and of the
redundancy of the representation of eq 4, particularly in
connection with commonly employed ionic terms involving the
transfer of one or more electrons from one atom to others.
[lustrative molecular calculations involving hydrogen atoms
help to clarify these issues, and also demonstrate the capabilities
of the algorithms and codes devised in these familiar cases.

In Figure 1 are shown as an example the eigenvalues of the
metric matrix of eq 13 for symmetric collinear H; as a function
of atomic separation (R, = R;.), constructed in 2s1p and 3s2p
atomic Slater basis sets employing hydrogenic exponents. These
atomic orbital basis sets give doublet spectral-product repre-
sentations of dimensions 375 (upper panel) and 2187 (lower
panel) of the forms ®*)(r:R) = { ®H)(1)@PH(2)@DHI(3)}
of eq 3. The eigenvalues of the antisymmetrizer of eq 5 in these
representations are seen to appear only in the allowable interval
(0, Q) where Q = 3!/(1!1!1!) = 6, and to largely span the
interval for smaller values of atomic separation. The great many
values near O in the lower panel are in accordance with the
lower end of the spectrum of the projector £, providing a point
of accumulation.”® The eigenstates corresponding to these
approximately zero eigenvalues refer to non totally antisym-
metric states in the product basis (eqs 3 and 15), whereas in
the prior antisymmetrized basis they refer to linearly dependent
states (eqs 4 and 16). Conversely, the states of eqs 15 and 16
corresponding to the largest eigenvalues of Figure 1 refer to
approximately totally antisymmetric and linearly independent
states, respectively. Note that the value Q = 6 implies the
antisymmetric basis of eq 4 is 6-fold redundant in the limit of
closure in this case, the redundancy of which is removed by
the canonical orthogonalization procedure of eq 16. As the
number of basis functions and their spatial extent is increased,
the eigenvalues of Figure 1 converge to the upper and lower
limiting points of the spectrum for finite values of atomic
separation, whereas they approach unity in the limit of arbitrarily
large separation in any square-integrable representation.
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Figure 2. Constant-value contours for the two doublet eigenvalue
surfaces of the metric matrix of eq 13 for T-shaped arrangements in
H; constructed in a minimal 1s? representation, employing increments/
decrements of 0.1 between adjacent contours in each case: (a) upper
surface; (b) lower surface. The two surfaces join along the line w =
1.155h line, corresponding to Dy, symmetry,”” with the solid and dashed
lines indicating the continuity of surface crossings along this line.

Although large orbital basis sets are generally required to
achieve convergence in spectral-product representations,'? metric
matrices constructed even in small basis sets provide useful
information.'* In Figure 2 are shown constant-value contours
for the two doublet eigenvalues of the metric matrix obtained
in a minimal 1s® spectral-product representation for T-shaped
H; as functions of the width (w) and height (%) of the T. In (a),
the contours that depict the higher-lying surface are monotoni-
cally increasing from that labeled 1.0, whereas in (b) depicting
the lower surface, they are monotonically decreasing from that
labeled 0.9. The two surfaces have downward and upward facing
cusps, respectively, in their contours along a seam of intersection
following the line w = 1.155h, which corresponds to a D3, high-
symmetry arrangement of the three atoms.

The high-symmetry seam in Figure 2 anticipates the better-
known D3, seam of intersection of the two lowest-lying doublet
energy surfaces in Hs,?’ this feature identified here entirely on
basis of calculations of the eigenvalues of the metric matrix.
Such calculations of metric matrices, which entail evaluations
only of overlap matrix elements, can provide useful information
in other molecular cases more generally in the absence of any
energy calculations whatsoever.

The spectral-product representation of eq 3 is complete,
employing only the indicated neutral atomic states,'* and the
associated antisymmetrized basis of eq 4 is correspondingly
Q-fold redundant in the closure limit. It is instructive in this
connection to examine the effects of adding commonly em-
ployed ionic or charge-transfer configurations to the atomic
spectral-product basis of eq 3, and to demonstrate quantitatively
the additional redundancy added thereby. In Figure 3 are shown
the singlet and triplet eigenvalues of the metric matrix of eq 13
for diatomic hydrogen constructed in a 7s5p3d2flg Slater basis
set employing fixed hydrogen 1s,2p,3d,4f,5g exponents in
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sp

Eigenvalues of S

R (ay)

Figure 3. Eigenvalues of the singlet- and triplet-state metric matrix
of eq 13 for diatomic hydrogen H, constructed in a 7s5p3d2flg
Sturmian Slater basis set,*? including both covalent (119) and charge-
transfer (154) valence-bond excitations from the Heitler—London
configurations. The origins of the structures evident in the plot, and of
the spectral interval (0, 4) in this case, are discussed in the text.

forming Sturmian sequences.”® The eigenvalues shown cor-
respond to calculations which include all single-excitations from
the Heitler—London configuration, including both covalent
(H—H, 119 terms) and ionic (H'H™ and H H', 154 terms)
structures. Although the redundancy factor is Q = 2!/(1!1!) =
2 for the antisymmetrized spectral-product or covalent repre-
sentations of eq 4, the presence of the additional charge-transfer
terms in Figure 3 is seen to give rise to eigenvalues which appear
in the larger interval (0, 4) in this case. This larger interval is
a consequence of the 4-fold redundancy in the closure limit of
the combined covalent and ionic basis employed in the
calculations of Figure 3, whereas the band of near zero
eigenvalues in Figure 3 arises from the linear-dependence of
charge-transfer terms with the diffuse covalent excitations; this
band is absent in the eigenvalue spectrum (0, 2) obtained with
covalent terms alone employing the same orbital basis set.
Moreover, the bands of eigenvalues approaching 2 for larger
separation are also consequences of the charge-transfer terms,
which continue to provide a 2-fold redundant explicitly anti-
symmetric representation in the dissociation limit, whereas the
bands of eigenvalues approaching unity at large separation arise
from the covalent structures in the representation.

The results of Figure 3 indicate the eigenvalues of the metric
matrix can form a complex pattern that can distinguish among
the types of structures present in the representation employed,
largely confirming the redundancy of covalent and ionic terms
commonly employed in molecular calculations, and emphasizing
the importance of removing these redundancies in explicitly
antisymmetrized large-basis-set calculations by the canonical
orthogonalization of eq 18.

The capabilities of the Slater-based spectral-product codes
devised for energy calculations are illustrated in Figures 4 and
5, which depict low-lying (n = 1) and excited (n = 2) singlet
and triplet potential energy curves, respectively, in H, obtained
from full configuration-interaction calculations in an optimal
5s3p2d1f valence Slater basis.?® These results are in excellent
agreement with the accepted ground-state (n = 1) values,* and
are in generally good but not precise accord with the most
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Figure 4. Singlet-state potential energy curves dissociating to n = 1
and 2 limits in diatomic hydrogen H,, obtained from full (1953 terms)
configuration-interaction calculations which include both covalent and
charge-transfer terms in an optimized 5s3p2d1f valence basis of Slater
orbitals,” employing computer codes devised recently for this purpose.
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Figure 5. Triplet-state potential energy curves dissociating to n = 1
and 2 limits in diatomic hydrogen H,, obtained from full (1891 terms)
configuration-interaction calculations which include both covalent and
charge-transfer terms in an optimized 5s3p2d1f valence basis of Slater
orbitals,” employing computer codes devised recently for this purpose.

accurate previous calculations available for the indicated excited
(n = 2) states.’®

Of particular interest in Figure 4 are the shapes of the B'Z;
and E,FIZQ curves, and the presence of a double well in the
latter curve and in the G,KIZI; curve, and the large barrier in
the f II, state in Figure 5. The long-range nature of the
calculated B'Y} and EJF'E; curves, which provide good
approximations to the accurate values,*® is commonly attributed
to contributions from charge-transfer terms, whereas the cal-
culated G,K'Z; and f *I1, curves provide reasonably quantitative
descriptions of the known detailed shapes of these two curves
but are not in precise agreement with the results of highly
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accurate calculations.®® Of course, the high-lying charge-transfer
structure (H* + H™) is stable and gives rise to a diabatic
potential curve that contributes significantly to the B'Z{ and
E,F'Zgr curves of Figure 4, but this circumstance does not
invalidate the foregoing assertions that charge-transfer structures
are already present in the spectral-product description of eq 3
in the closure limit, as the results of Figure 3 indicate.

Highly accurate calculation of the excited-state potential
energy curves of H, are generally performed by employing
special basis sets on a state-by-state basis. It is therefore
satisfying that the results of Figures 4 and 5 are obtained from
single diagonalizations of Hamiltonian matrices constructed in
Slater-based spectral-product representations employing the
algorithms and codes devised, which are applicable to other
molecules more generally.

B. Diatomic CH Molecule. The foregoing spectral-product
representations of molecules containing hydrogen atoms (H,,
H;) are closely related to corresponding valence-bond descrip-
tions, the two approaches differing largely in the normalization
conventions employed for orbital-product states, and a predi-
agonalization of the atomic hydrogen Hamiltonian employed
in the spectral-product development. The situation is quite
different for molecules containing many-electron atoms. The
differences between metric and Hamiltonian matrices con-
structed in valence-bond and spectral-product representation can
be illustrated in many-electron-atom cases employing the well-
studied diatomic CH molecule as a simple example.' In this
example, both valence-bond and spectral-product metric and
Hamiltonian matrices are constructed by employing identical
hydrogen atom 1s spin orbitals and 1s*(2s?2p? + 2s2p® + 2p*)
carbon atom valence-shell configurations, the latter giving rise
to 55 distinct atomic multiplet states. The valence-bond states
made from these orbital configurations are in the forms of
standard tableau functions which are employed directly in
constructing the required matrices,®>> whereas in the spectral-
product representation the two hydrogen atom [%S°] and 55
carbon atom [(2)’P¢, (2)'D¢, (2)'S¢, 3S°, *D°, 3P°, 'D°, 3S°, 'P°]
multiplet states are constructed and the spectral-product matrices
of eqs 11—13 of dimension 2 x 55 = 110 are evaluated
employing the aforementioned valence-bond — spectral-product
transformation devised explicitly for this purpose.

In Figure 6 are shown eigenvalues of the doublet- and quartet-
state metric matrix for diatomic CH constructed in the afore-
mentioned atomic valence configurations using an optimized
valence (7s5p3d2flg) atomic carbon orbital basis.?’ The solid
lines refer to eigenvalues of the metric matrix in the orthonormal
spectral-product representation of eq 3, whereas the dashed lines
are those obtained in the same configurational basis employing
the standard tableau functions of valence-bond theory.%* The
two sets of eigenvalues of Figure 6 are evidently quite different,
those in the valence-bond description grouping in accordance
with the normalizations of standard tableau functions transform-
ing under particular irreducible representations of S,." and
approaching different limits at large atomic separation. In
contrast, there are only three distinct highly degenerate eigen-
values of the spectral-product metric matrix in Figure 6, which
are seen to approach unity, in accordance with the orthonor-
mality of the spectral-product representation at large atomic
separation. The small number of distinct eigenvalues of the latter
representation relates to use of only n = 1 shell hydrogen and
n = 2 shell carbon multiplet configurations in the calculations,
and to the orthogonality of the 110-term representation. Relat-
edly, although the allowable eigenvalue interval for CH formally
extends to Q = 7!/(6!1!1!) = 7, the 110-term representation
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Figure 6. Eigenvalues of the doublet- and quartet-state metric matrices
of eq 13 for diatomic CH, constructed employing hydrogen (1s) and
carbon 1s%(2s*2p> + 2s2p® + 2p*) multiplet atomic configurations in
an optimized 7s5p3d2f1g valence orbital basis.”? The solid lines refer
to eigenvalues of the matrix in the orthonormal spectral-product
representation, whereas the dashed lines are those obtained in the same
configurational basis employing the normalization conventions of the
standard tableau functions of valence-bond theory.®%
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Figure 7. Potential energy curves for diatomic CH constructed
employing minimal valence-shell multiplet carbon (1s*2s22p?) 3P, 'D¢,
1S¢ and hydrogen (1s) 2S¢ atomic eigenstates, providing a representation
of 2 x 15 = 30 spectral-product terms. The spectroscopic state labels

employed follow conventions from experimental and previously
reported theoretical studies.!

employed in Figure 6 is too small to exhibit the full redundancy
of the basis of eq 4 in this case.

Just as the metric matrices obtained in the valence-bond and
spectral-product representations generally differ, so also do the
corresponding Hamiltonian matrices. Nevertheless, the energy
eigenvalues obtained from the two representations employing
identical atomic configurations must be identical, providing a
useful test of the algorithms and codes devised to perform the
present calculations. In Figure 7 are shown low-lying potential
energy curves for CH obtained in (1s)?S¢ atomic hydrogen and
(1s*2s%2p%)*P¢,'D¢,!S¢ atomic carbon representations. The two
sets of potential energy curves obtained from the valence-bond
and spectral-product representations of dimension 2 x 15 =
30 are found to be identical but to provide generally poor
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Figure 8. Potential energy curves for diatomic CH obtained in valence-
shell multiplet carbon 1s%(2s?2p? + 2s2p* + 2p*) and hydrogen (1s)
atomic eigenstates, providing a representation of 2 x 55 = 110 spectral-
product terms. The origins of the significant differences between these
curves and the similarly labeled curves of Figure 7 are discussed in
the text. Additional curves dissociating to atomic carbon multiplet states
above the *D° limit are calculated but not reported here.

representations of the known accurate values.'> Specifically,
although the ground state is correctly predicted to be of *IT
symmetry, the calculated chemical binding energy is much too
small, the predicted A%A state incorrectly falls above the B2X~
state, and no other chemically bound states are predicted by
the representation. Improvements in the quality of the P, 'D¢,
and 'S°® carbon-atom multiplet states employed in the spectral-
product representation not reported here are found to have
negligible effect on the calculated potential energy curves of
Figure 7.

In Figure 8 are shown the results of calculations similar to
those of Figure 7, but now including the additional atomic
carbon n = 2 shell multiplet configurations 1s*2s2p® and 1s?2p*.
The former configuration gives rise to the important 5S° and
3D atomic carbon states, which have significant effect on the
calculated potential energy curves. In particular, the a “X~, A2A,
B2X7, and C?Z7 state curves are significantly lower than those
of Figure 7 and in the accepted order, a chemically bound a
43~ curve is now obtained, and the ground X*IT state is more
strongly bound than in Figure 7. The significant lowering of
the a*Z" state curve is due to the additional >~ configurational
state function, which dissociates to the °S° atomic carbon state,
present in the full valence-shell description of bonding in CH.
That is, the well-known sp* configuration of valence-bond theory
appears in the spectral-product representation in the
(1s?2s2p*)°S° atomic carbon valence state, which is spectrally
concentrated in the a*Z~ state at the equilibrium interatomic
separation. Similarly, the significant lowering of the A%A and
B2X" state curves correlating with the excited 'D® atomic carbon
state is due to contributions in the spectral-product representation
from the high-lying (1s*2s2p*)°D° atomic carbon state. Ad-
ditional higher-lying potential energy curves obtained from the
calculations arising from the P°, 'D°, 3S°, 3P¢, 'D¢, and 'S°
carbon atom multiplets can be analyzed in similar fashion but
are not reported here.

Although population-analysis methods can be employed to
identify qualitatively the presence of important configurations
in calculated molecular wave functions, the atomic spectral
concentration of particular atomic components in the sp
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Figure 9. Eigenvalues of the singlet- and triplet-state metric matrices
of eq 13 for symmetric collinear (H—C—H) methylene arrangements,
constructed employing products of valence-shell multiplet carbon
15%(2s’p? + 2s2p® + 2p*) and hydrogen (1s) atomic configurations. The
solid lines refer to eigenvalues of the matrices constructed in the
orthonormal spectral-product representation, whereas the dashed lines
are those obtained in the same configurational basis employing the
normalization conventions of the standard tableau functions of valence-
bond theory.*?

representation is particularly meaningful in that these states have
physical significance and are not subjectively based on particular
choices of basis sets, methods of calculation, or analysis
techniques. Moreover, the contributions from particular atomic-
state products are read off directly and quantitatively from the
eigenvectors obtained in the representational basis without
further subjective manipulations.

C. Triatomic CH, Molecule. The methylene molecule has
played an important role in the development of accurate quantum
chemical computational methodologies'® and accordingly is
studied here in connection with the metric matrices and atomic
spectral compositions of molecular wave functions of interest
to the spectral-product development. Calculations similar to
those reported above for the CH molecule help to further clarify
aspects of the spectral-product development employing atomic
multiplet configurational models for illustrative purposes.

In Figure 9 are shown metric matrix eigenvalues in both
valence-bond and spectral-product representations employing
the atomic hydrogen (1s) and carbon 1s%(2s?2p? + 2s2p* + 2p*)
configurations described in the preceding section. In this three-
atom, eight-electron case, the spectral-product representation of
eq 3 includes 2 x 2 x 55 = 220 distinct spectral-product terms.
The redundancy factor for the corresponding basis of eq 4 is
formally Q = 8!/(6!1!1!) = 56, although the closed 1s> carbon
shell and the absence of higher hydrogen and carbon orbital
excitations limits the calculated eigenvalues to a much smaller
spectral interval. As in Figure 6 for the CH molecule, the
eigenvalues of Figure 9 are very different in the two representa-
tions, with the highly degenerate spectral-product values
uniformly approaching unity at large atomic separation and those
in the valence-bond representation forming distinct groups
associated with the normalizations of standard tableau functions
transforming under the different irreducible representations of
S,,-'? Of course, the corresponding Hamiltonian matrices in the
two representations also differ, although the energy eigenvalues
must be identical when the same orbital configurations are
employed in the two developments.
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Figure 10. Potential energy curves for triplet methylene states in
symmetric collinear (H—C—H) arrangements obtained in minimal
valence-shell multiplet carbon (1s*2s*2p?) and hydrogen (1s) atomic
eigenstates, providing a representation of 2 x 2 x 15 = 60 spectral-
product terms. The ground X>Z; state is labeled on basis of experimental
and previously reported theoretical studies,'® whereas the other states
are given sequential numerical labels.
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Figure 11. Potential energy curves for singlet methylene states in
symmetric collinear (H—C—H) arrangement obtained in minimal
valence-shell multiplet carbon (1s*2s*2p?®) and hydrogen (1s) atomic
configurations, providing a representation of 2 x 2 x 15 = 60 spectral-
product terms. The two states given spectroscopic-state labels follow
conventions from experimental and previously reported theoretical
studies,'® whereas the other states are given sequential numerical labels.

In Figures 10 and 11 are shown triplet- and singlet-state
potential energy curves for methylene in symmetric collinear
(H—C—H) arrangements obtained in the multiplet carbon
(1s*2s?2p?) and hydrogen (1s) atomic configurations, proving a
reduced spectral-product representation of 2 x 2 x 15 = 60
atomic-product states in this case. The lowest-lying potential
curves in this minimal valence-multiplet representation are seen
to be very weakly bound *I1, and 'T1, states, whereas the correct
lowest-energy triplet and singlet states in symmetric collinear
CH, arrangement are known to be the X*Z, and a'A, states.'®
Additionally, all other curves in Figures 10 and 11 are seen to
be strongly nonbonding. Clearly, the minimal multiplet repre-
sentation fails to provide even qualitatively correct descriptions
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Figure 12. Potential energy curves for triplet methylene states in
symmetric collinear (H—C—H) arrangements obtained in valence-shell
multiplet carbon 1s%(2s22p> + 2s2p’ + 2p*) and hydrogen (1s) atomic
configurations, providing a representation of 2 x 2 x 55 = 220 spectral-
product terms. The origins of the significant differences between these
curves and the similarly labeled curves of Figure 10 are discussed in
the text. Additional higher-lying and higher-multiplicity states are
calculated but not reported here.
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Figure 13. Potential energy curves for singlet methylene states in
symmetric collinear (H—C—H) arrangement obtained in valence-shell
multiplet carbon 15%(2s?2p® + 2s2p® + 2p*) and hydrogen (1s) atomic
states, providing a representation of 2 x 2 x 55 = 220 spectral-product
terms. The origins of the significant differences between these curves
and the similarly labeled curves of Figure 11 are discussed in the text.
Additional higher-lying and higher-multiplicity states are calculated but
not reported here.

of the potential energy curves in CH,. As in the case of CH
indicated above, improvements in the quality of the 3P¢, 'D¢,
and 'S¢ carbon atom multiplets employed in calculations not
reported here are found to have little effect on the results of
Figures 10 and 11.

In Figures 12 and 13 are shown potential energy curves for
the states of Figures 10 and 11, now constructed by employing
the 55 carbon atom 1s*(2s?2p? + 2s2p® + 2p*) valence-shell
configurations, providing 2 x 2 x 55 = 220 individual atomic-
product terms in the spectral-product representation of eq 3 in
this case. As in the case of CH, there are significant changes in
the CH, potential curves of Figures 12 and 13 relative to those
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of Figures 10 and 11. Specifically, the X*%, state in Figure 12
is seen to become the lowest energy state, the a'A, state in
Figure 13 becomes the lowest-lying single state, and the ¢!y
state there becomes the first excited singlet, in accord with the
results of accurate calculations.'® The lowering of the X*%
potential curve is a consequence of the additional *; config-
uration arising from the presence of the S° carbon atom state
in the larger representation, whereas the lowering of the a'A,
and c¢'Xf states is due to the indicated additional states
dissociating to the high-lying *D° carbon atom state in the larger
atomic representation employed. As in the case of CH indicated
above, the sp® configuration in atomic carbon through its
appearance in the 3S° and 3D° atomic states plays a significant
role in the nature of chemical binding in methylene, findings
based on direct inspection of the molecular eigenvectors in the
spectral-product representation.

IV. Discussion and Concluding Remarks

The atomic spectral-product approach to ab initio molecular
electronic structures reported here attempts to provide a fresh
perspective on such calculations based on products of formally
complete sets of atomic eigenfunctions. The theoretical develop-
ment presented in section II demonstrates the equivalence
between enforcement of electron antisymmetry either prior to
or subsequent to Hamiltonian matrix evaluation in such an
atomic spectral-product representation. In the more familiar case
of prior enforcement of electron antisymmetry in the many-
electron representation, Hamiltonian matrix elements depend
on the positions of all the atoms in the aggregate, and require
repeated evaluations in construction of potential energy surfaces.
A linearly independent subspace of this redundant representation
must generally be isolated to avoid encountering computational
instabilities in obtaining molecular energy eigenfunctions and
eigenvalues. In contrast, the post-antisymmetrization approach
employs a complete but not overcomplete atomic-eigenstate-
product representation in the absence of term-by-term electron
antisymmetrization, providing Hamiltonian matrix elements that
can be evaluated once and for all and retained for repeated
polyatomic applications. There remains the task in this approach
of isolating the totally antisymmetric subspace of the spectral-
product representation to obtain the physically significant
molecular eigenstates.

The matrix representing the total antisymmetrizer in the
spectral-product basis provides a method for isolating the totally
antisymmetric subspace of the representation by unitary trans-
formation of the Hamiltonian matrix after its evaluation. This
unitary transformation approach to antisymmetrization provides
an alternative to the more commonly employed prior global
antisymmetrization. It is seen from the development of section
II that the antisymmetrizer matrix is, in fact, equivalent to the
metric matrix of the antisymmetrized form of the spectral-
product representation. Accordingly, there is a close connection
between isolating the totally antisymmetric representation of a
many-electron atomic-product basis with the canonical orthogo-
nalization of its explicitly antisymmetric form.

The computational applications to simple molecules (H,, Hs,
CH, CH;) reported in section III illustrate the role of the
eigenvalue spectrum of the metric matrix in estimating closure
in the spectral-product representation, and in correspondingly
identifying redundancy in its explicitly antisymmetrized form.
The allowable range of the eigenvalue spectrum of the anti-
symmetrizer employed in the spectral-product basis is seen to
be determined by the number of electrons in each atom and by
their total sum. Convergence of the eigenvalues to the extreme
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points of the allowable range in the case of triatomic hydrogen
H; is seen to correspond to the separation of totally antisym-
metric and non totally antisymmetric states in the spectral-
product basis, or, equivalently, to the separation of linearly
independent and linearly dependent states in its antisymmetrized
form. The introduction of additional terms in atomic-product
representations, typified by charge-transfer terms in the case of
diatomic hydrogen H,, is seen to disrupt this simple picture,
and to extend the allowable range of the eigenvalue spectrum
of the antisymmetrizer to accommodate the additional basis-
set redundancy introduced. The metric matrix appears to provide
a device for developing suitable atomic spectral-product rep-
resentations entirely in the absence of the molecular electronic
energy calculations commonly employed in devising orbital
basis sets for use in more conventional calculations.

The illustrative molecular energy calculations of the simple
molecules studied (H,, CH, CH,) reported in section III
demonstrate the capabilities of the Slater-orbital- and valence-
bond-based algorithms and codes devised for this purpose, as
well as the nature of a descriptor of molecular electronic
structures the development provides. Calculations of the ground
and excited-state potential energy curves in H, dissociating to
the n =1 and n = 2 atomic limits, obtained from straightforward
diagonalizations of singlet and triplet configuration-interaction
energy matrices constructed with Slater-orbital basis sets, are
found to be in good accord with the most accurate calculations
available, suggesting the codes devised should be applicable to
other molecules more generally. Employing simple multiplet
models as examples, the important role of the 2s2p? configu-
ration in atomic carbon is understood from a new perspective
provided by the spectral-product development. Specifically, the
contributions to molecular CH and CH, eigenstates from 3S°
and *D° atomic carbon states which arise specifically from the
2s2p? configuration are seen to have significant qualitative and
quantitative effects on the positions and shapes of selected
potential energy curves. The quantitative perspective provided
by the atomic-product compositions of molecular electronic
wave functions in the spectral-product representation involves
the physically significant many-electron atomic eigenstates of
the bonding atoms. Accordingly, it would seem the spectral-
product representation provides both a potentially useful
computational and conceptual and basis for studies of molecular
electronic eigenstates.

Additional calculations not reported here involving H, B, C,
N, O, and F atom-containing compounds largely support and
elaborate the foregoing general conclusions. Studies in progress
are now focused on development of significantly more efficient
and robust computational methods for performing spectral-
product calculations, use of larger Slater-orbital representations
in such computational applications, efficient means of isolating
the required totally antisymmetric subspaces, and related
developmental matters.
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